

Accreditation

The Deutsche Akkreditierungsstelle attests with this **Partial Accreditation Certificate** that the testing laboratory

MT Laboratories GmbH Am Eisenbrand 24a, 40667 Meerbusch

meets the requirements according to DIN EN ISO/IEC 17025:2018 for the conformity assessment activities listed in the annex to this certificate. This includes additional existing legal and normative requirements for the testing laboratory, including those in relevant sectoral schemes, provided they are explicitly confirmed in the annex to this certificate.

The management system requirements of DIN EN ISO/IEC 17025 are written in the language relevant to the operations of testing laboratories and confirm generally with the principles of DIN EN ISO 9001.

This accreditation was issued in accordance with Art. 5 Para. 1 Sentence 2 of Regulation (EC) 765/2008, after an accreditation procedure was carried out in compliance with the minimum requirements of DIN EN ISO/IEC 17011 and on the basis of a review and decision of the appointed accreditation committees.

This partial accreditation certificate only applies in connection with the notice of 11.10.2023 with accreditation number D-PL-18478-01.

It consists of this cover sheet, the reverse side of the cover sheet and the following annex with a total of 5 pages.

Registration number of the partial accreditation certificate: **D-PL-18478-01-02** It is a part of the accreditation certificate: D-PL-18478-01-00.

Berlin, 11.10.2023

Ralf Egner Head of Department Translation issued: 09.01.2024

Dr. Tobias Poeste Head of Technical Unit

The certificate together with the annex reflects the status as indicated by the date of issue. The current status of any given scope of accreditation can be found in the directory of accredited bodies maintained by Deutsche Akkreditierungsstelle GmbH (www.dakks.de).

This document is a translation. The definitive version is the original German accreditation certificate.

Deutsche Akkreditierungsstelle GmbH

Office Berlin Spittelmarkt 10 10117 Berlin

Office Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main Office Braunschweig Bundesallee 100 38116 Braunschweig

The Deutsche Akkreditierungsstelle GmbH (DAkkS) is the entrusted national accreditation body of the Federal Republic of Germany according to § 8 section 1 AkkStelleG in conjunction with § 1 section 1 AkkStelleGBV. DAkkS is designated as the national accreditation authority by Germany according to Art. 4 Para. 4 of Regulation (EC) 765/2008 and clause 4.7 of DIN EN ISO/IEC 17000.

Pursuant to Art. 11 section 2 of Regulation (EC) 765/2008, the accreditation certificate shall be recognised as equivalent by the national authorities within the scope of this Regulation as well as by the WTO member states that have committed themselves in bilateral or multilateral mutual agreements to recognise the certificates of accreditation bodies that are members of ILAC or IAF as equivalent.

DAkkS is a signatory to the multilateral agreements for mutual recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Co-operation (ILAC).

The up-to-date state of membership can be retrieved from the following websites:

EA: www.european-accreditation.org

ILAC: www.ilac.org IAF: www.iaf.nu

Deutsche Akkreditierungsstelle

Annex to the Partial Accreditation Certificate D-PL-18478-01-02 according to DIN EN ISO/IEC 17025:2018

Valid from:

11.10.2023

Date of issue:

09.01.2024

This annex is a part of the accreditation certificate D-PL-18478-01-00.

Holder of partial accreditation certificate:

MT Laboratories GmbH Am Eisenbrand 24a, 40667 Meerbusch

at the location:

Bliersheimer Straße 27, 47229 Duisburg

The testing laboratory meets the requirements of DIN EN ISO/IEC 17025:2018 to carry out the conformity assessment activities listed in this annex. The testing laboratory meets additional legal and normative requirements, if applicable, including those in relevant sectoral schemes, provided that these are explicitly confirmed below.

The management system requirements of DIN EN ISO/IEC 17025 are written in the language relevant to the operations of testing laboratories and confirm generally with the principles of DIN EN ISO 9001.

selected mechanical- technological tests and metallographic examination; optical emission spectrometry on low- and high alloyed steels as well as corrosion tests at metallic components of plant engineering and plant construction

This certificate annex is only valid together with the written accreditation certificate and reflects the status as indicated by the date of issue. The current status of any given scope of accreditation can be found in the directory of accredited bodies maintained by Deutsche Akkreditierungsstelle GmbH at https://www.dakks.de.

The testing laboratory is permitted, without being required to inform and obtain prior approval from DAkkS, to use standards or equivalent testing methods listed here with different issue dates. The testing laboratory maintains a current list of all testing procedures within the flexible scope of accreditation.

1 Mechanical-technological tests

ASTM E 384-22 2022-10	Standard Test Method for Microindentation Hardness of Materials
ASTM E 18-22 2022-05	Standard Test Methods for Rockwell Hardness of Metallic Materials
ASTM A 370-22 2022-09	Standard Test Methods and Definitions for Mechanical Testing of Steel Products
DIN EN ISO 6506-1 2015-02	Metallic materials - Brinell hardness test - Part 1: Test method
ASTM E 10-18 2018-07	Standard Test Method for Brinell Hardness of Metallic Materials
DIN EN ISO 6507-1 2022-08	Metallic materials - Vickers hardness test - Part 1: Test method
ASTM E 92-17 2017-04	Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials
DIN EN ISO 6508-1 2022-12	Metallic materials - Rockwell hardness test - Part 1: Test method (here: <i>only scale C</i>)
ASTM E 18-17 2017-07	Standard Test Methods for Rockwell Hardness of Metallic Materials
DIN EN ISO 9015-1 2011-05	Destructive tests on welds in metallic materials - Hardness testing - Part 1: Hardness test on arc welded joints
DIN EN ISO 7438 2021-03	Metallic materials - Bend test
DIN EN ISO 6892-1 2018-09	Metallic materials - Tensile testing - Part 1: Method of test at room temperature (here: <i>Procedure A and B</i>)

Valid from:

11.10.2023

Date of issue:

09.01.2024

DIN EN ISO 6892-2

2018-09

Metallic materials - Tensile testing - Part 2: Method of test at

elevated temperature

(here: Procedure A and B)

DIN EN ISO 148-1

2017-05

Metallic materials - Charpy pendulum impact test - Part 1: Test

method

ASTM E 23-18

2018-06

Standard Test Methods for Notched Bar Impact Testing of

Metallic Materials

DIN EN ISO 8492

2014-03

Metallic materials - Tube - Flattening test

DIN EN ISO 8493

2004-10

Metallic materials - Tube - Drift-expanding test

DIN EN ISO 8494

2014-03

Metallic materials - Tube - Flanging test

DIN EN ISO 8495

2014-03

Metallic materials - Tube - Ring-expanding test

DIN EN ISO 8496

2014-03

Metallic materials - Tube - Ring tensile test

DIN EN ISO 4136

2022-09

Destructive tests on welds in metallic materials - Transverse tensile

test

DIN EN ISO 5173

2016-02

Destructive tests on welds in metallic materials - Bend tests

DIN EN ISO 9017

2018-09

Destructive tests on welds in metallic materials - Fracture test

2 Metallographic examination

DIN EN ISO 643

2020-06

Steels - Micrographic determination of the apparent grain size

DIN EN ISO 17639

2022-05

Destructive tests on welds in metallic materials - Macroscopic

and microscopic examination of welds

ASTM E 562-19

2019-08

Standard Test Method for Determining Volume Fraction by

Systematic Manual Point Count

Valid from:

11.10.2023

Date of issue:

09.01.2024

Page 3 of 5

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

ASTM E 112-13

2013-10

Standard Test Methods for Determining Average Grain Size

DIN EN ISO 945-1

2019-10

Microstructure of cast irons - Part 1: Graphite classification by

visual analysis

ISO 4968

Steel - Macrographic examination by sulphur print (Baumann

2022-03

method)

DIN EN 10247

2017-09

Micrographic examination of the non-metallic inclusion content

of steels using standard pictures

3 Corrosion tests

ASTM A 262-15

2015-09

Standard Practices for Detecting Susceptibility to Intergranular

Attack in Austenitic Stainless Steels

ASTM A 923-22

2022-06

Standard Test Methods for Detecting Detrimental Intermetallic

Phase in Duplex Austenitic/Ferritic Stainless Steels

DIN EN ISO 3651-1

1998-08

Determination of resistance to intergranular corrosion of stain-

less steels - Part 1: Austenitic and ferritic-austenitic (duplex) stainless steels - Corrosion test in nitric acid medium by

measurement of loss in mass (Huey test)

DIN EN ISO 3651-2

1998-08

Determination of resistance to intergranular corrosion of stain-

less steels - Part 2: Ferritic, austenitic and ferritic-austenitic (duplex) stainless steels - Corrosion test in media containing

sulfuric acid

(here: Methods A, B, C)

ASTM G 28-22

2022

Standard Test Methods for Detecting Susceptibility to Inter-

granular Corrosion in Wrought, Nickel-Rich, Chromium-Bearing

Alloys

(here: Method A)

ASTM G 48-11(2020)e1

2020-10

Standard Test Methods for Pitting and Crevice Corrosion

Resistance of Stainless Steels and Related Alloys by Use of

Ferric Chloride Solution

(here: Method A)

Valid from:

11.10.2023

Date of issue:

09.01.2024

Page 4 of 5

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

4 Spectral analysis

AA 12 Optical Spark Emission Spectrometry (OES) - Stationary

2023-03 Fe and Ni matrix

(in accordance with the listed elements and the requirements of

the related standard)

AA 13 Positive Material Identification (PMI)

2023-03

Abbreviations used:

AA Work Instructions of MT Laboratories GmbH
ASTM American Society for Testing and Materials
DIN German Institute for Standardization

EN European Institute

IEC International Electrotechnical Commission
ISO International Organization for Standardization

Valid from:

11.10.2023

Date of issue:

09.01.2024